the square of the mixing coefficient divided by the square of the separation between the spin-allowed and spin-forbidden transitions. Thus while we would expect a *z* component, based upon our selection rules, the intensity of this component is dependent upon a coupling coefficient and the proximity of a spin-allowed transition containing the equivalent representation. The polarization behavior of the $21,500$ -cm⁻¹ grouping is then explainable in terms of the behavior of the neighboring ${}^{3}T_{2}$ spin-allowed transition.

Acknowledgment.-This work was supported by National Science Foundation Grant GI' 7920.

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08540

Pt-0 Stretching and OH Wagging Frequencies in Trimethylplatinum Hydroxide'

BY P. ALAN BULLINER AND THOMAS G. SPIRO

Received November 11, 1968

There has been considerable recent interest in the characterization of trimethylplatinum hydroxide $(CH₃)₃P_tOH$, first prepared by Pope and Peachey.² Several workers have investigated the infrared and nmr spectra of this compound, $3-6$ and very recently the assumed tetrameric structure upon which their analyses were based has been confirmed.^{$7-9$} In this structure the four platinum atoms lie at the corners of a tetrahedron, with the four oxygen atoms forming a slightly smaller, interpenetrating tetrahedron, each OH group bridging three platinum atoms.

In the course of a detailed Raman and infrared study¹⁰ of the compounds $[(CH_3)_3PLX]_4$ (where X = OH, Cl, I), we found reason to question previous interpretations of the infrared spectrum of $[{\rm CH}_3)_3$ -PtOH14, specifically in regard to the assignment of bands at 719 and 365 cm^{-1} to Pt-O stretching and PtO deformation modes, respectively. Hoechstetter³ originally assigned the band at 719 cm^{-1} to Pt-O stretching on the basis of a small shift upon deuteration of the hydroxyl group. Morgan, *et al.*,⁴ accepted this assign-

- *(5)* V. **A.** Maroni, Ph.D. Thesis, Princeton University, 1967.
- (6) K. Kite, J. A. S. Smith, andE. J. Wilkins, *J. Chem.* Scc.. *A,* 1744 (1966). (7) D. *0.* Cowan, N. G. Krieghoff, and *G.* Ilonnay, *Acta* Cryst., **B24,** 287 (1968).

ment and in addition attributed a band at 365 em-' (beyond the range of the earlier work) to PtO deformation. In neither of these studies was a value assigned for the expected OH wagging mode.

Although the availability of vibrational spectra and assignments for metal-hydroxy complexes is limited, it is clear that the great majority of $M-O$ stretching frequencies in such complexes appear well below the 719 cm^{-1} assigned here. The range 300-625 cm⁻¹ includes most M-0 stretching frequencies for simple hydroxy complexes¹¹ and complexes in which hydroxyl groups bridge two metals.^{12,13} For hydroxyl or alkoxyl groups briding three metal atoms, one can compare the present case with $\mathrm{Pb}_4(\mathrm{OH})_4^{4+14}$ and $\mathrm{TI}_4(\mathrm{OR})_4^{15}$ which have structures analogous to that of trimethylplatinum hydroxide and which show M-O stretching frequencies between 290 and 510 cm⁻¹. In $Tl_2Pt_2O_7$, where one also has $Pt(IV)$ in octahedral coordination but where the Pt-O distances are considerably shorter (2.08 Å) *vs.* 2.22 Å in $\lceil (CH_3)_3P \text{tOH} \rceil_4$, the highest infrared band is still only $684 \text{ cm}^{-1.16}$ The structure of trimethylplatinum hydroxide shows no features which might account for an abnormally high Pt-0 stretching frequency .

Clegg and Hall'7 have reported Raman spectra for aqueous solutions of $(CH_3)_3PtX$, where X is a poorly coordinating anion such as NO_3^- , ClO_4^- , or $SO_4^2^-$. They interpreted the results in terms of a common cationic species, $(CH_3)_3Pt(OH_2)_n^+$, and assigned the value 357 cm^{-1} to a Pt-O stretching mode. It has since been shown¹⁸ that, for the perchlorate at least, $n = 3$, as expected. The Pt environment in this species is thus very similar to that in trimethylplatinum hydroxide, and we would expect Pt-0 stretching frequencies near 357 cm-I for the latter.

Raman spectra of *solid* $[(CH_3)_3P_tOH]_4^{10}$ also show a line near 719 cm^{-1} and another one at 706 cm^{-1} . However, these bands are evidently shifted in benzene solution, since no intensity is observed between 700 and 740 cm^{-1} . This is further evidence against the assignment of the 719 -cm⁻¹ frequency as Pt-O stretching *(i.e.,* a "cage" motion) since the remainder of the solution spectrum, as well as nmr results,⁴ strongly indicates that the tetrametric cage structure is maintained in benzene solutions. New Raman lines are found at 744, 790, and 829 cm^{-1} in benzene solution. These frequencies may include one or both of the modes shifted from 706 and 719 cm^{-1} .

We now present evidence from a new deuteration experiment that the 719 -cm⁻¹ band (observed here at 724 cm^{-1}) in trimethylplatinum hydroxide is in fact due to OH wagging.

- (12) D. J. Hewkin and W. P. Griffith, *J. Chem. SOC., A,* 471 (1966).
- (13) V. **A.** Maroni and T. G. Spiro, *Inorg. Chem.,* **7,** 183 (1968).
- (14) V. **A.** Maroni and T. G. Spiro, *ibid.,* **7,** 188 (1968).
- (15) V. A. Maroni and T. G. Spiro, *ibid.,* **7,** 193 (1968).
- (16) H. **It.** Hoekstra and S. Siegel, *ibid.,* **7,** 141 (1968).
- (17) D. E. Clegg and J. R. Hall, *Spectrochim. Acta*, 12, 357 (1965).
- (18) G. E. Glass and R. S. Tobias, *J. Am. Chem.* Soc., **89,** 6371 (1967).

⁽¹⁾ This investigation **was** supported by Public Health Service Grant GM-13498, from the National Institute of General Medical Sciences.

⁽²⁾ **W.** J. Pope and S. S. Peachey, *J. Chem.* Soc., *95,* **571** (1909).

⁽³⁾ M. N. Hoechstetter, *J, Mol. Spectry.,* **13,** 407 (1964).

⁽⁴⁾ *G.* L. Morgan, R. D. Rennick, and C. C. Soong, *Inorg. Chem.,* **5, 372** (1966).

⁽⁸⁾ T. G. Spiro, D. H. Templeton, and **A.** Zalkin, *Inorg. Chem.,* **7,** 2165 (1968).

⁽⁹⁾ H. S. Preston, J. C. Mills, and C. H. L. Kennard, *J. Orgonometal. Chem.* (Amsterdam), **14,** 447 (1968).

⁽¹⁰⁾ P. A. Bulliner, **V. A.** Maroni, and T. G. Spiro, to be submitted for publication.

⁽¹¹⁾ **I<.** Nakamota, "Infrared Spectra of Inorganic and Coordination Compounds," John Wiley & Sons, Inc., **New York,** N. Y., 1963.

Figure 1.--Infrared spectra of Nujol mulls of $[{\rm (CH_3)_3PtOH}]_4$ and $[(CH₃)₃P_tOD]₄$.

Experimental Section

 $[(CH₃)₃PtI]₄$ was prepared by the method of Pope and Peachey.² $[(CH₃)₃ PtOH]₄$ and $[(CH₃)₃ PtOD]₄$ were prepared from $[(CH_3)_3PtI]_4$ as described by Pope and Peachey,² using D_2O instead of H_2O in the latter case. This was also the method used by Hoechstetter³ in his deuteration experiment.

Infrared spectra were recorded as Sujol mulls between CsI plates on a Beckman IR-12 in the region $300-1100$ cm⁻¹ for the hydroxide and 300-4000 cm⁻¹ for the deuterated compound. For the hydroxide, the spectrum was also obtained from a KBr pellet in the region $250-4000$ cm⁻¹.

Raman spectra were obtained with He-Xe (6328 **A)** laser excitation on an instrument which has been described previously.¹⁹ Samples were microcrystalline solids pressed between glass plates.

Results and **Discussion**

Infrared spectra in the region $300-800$ cm⁻¹ are shown in Figure 1. Clearly the 724 -cm⁻¹ band has shifted to 560 cm⁻¹ on deuteration, while the 369 -cm⁻¹ band has shifted only to 344 cm^{-1} . It is possible that all or part of the residual intensity at ~ 724 cm⁻¹ in the $-OD$ spectrum can be attributed to the Nujol medium, which has a weak line in this area. The band at 592 cm^{-1} in the spectrum of the deuterated com-

(19) **K.** E. Miller, I). L Rousseau, and *G.* E. Lcroi, Technical Report No. 22, ONR Contract 1858(27), NR014-203, May 1967.

pound also appears in spectra of more concentrated samples of $[(CH_3)_3P_tOH]_4$ and has previously been assigned to Pt-C stretching.³⁻⁵ In addition, $[CH_3)_3$ -PtOH]₄ has an O-H stretching band at 3595 cm⁻¹ as previously reported, 3,4 while the deuterated compound shows an O-D stretching band at 2655 cm⁻¹ and only slight intensity at 3595 cm⁻¹. Otherwise the spectra are nearly identical.

Raman spectra of the solids give the same results. The lines found at 706 and 724 cm⁻¹ in $[(CH₃)₃P_tOH]₄$ do not appear in the spectra of the deuterated compound, but a new line is found at 563 cm^{-1} . The OH and OD stretching frequencies are essentially identical with those found in the infrared spectrum.

On the basis of these results, the line which we locate at 724 cm⁻¹ in the infrared spectrum of $[(CH_3)_3P_tOH]_4$, previously assigned to Pt-0 stretching, is now assigned to OH wagging, δ_{OH} (H-O-Pt bending). The observed ratio $\delta_{\text{OH}}/\delta_{\text{OD}} = 1.29$ is in the range found for many other hydroxy species.20 We also assign the additional Raman line at 706 cm^{-1} in the H compound to OH wagging. The infrared band which we find at 369 cm^{-1} and the shoulder at 396 cm^{-1} can then be assigned to Pt-0 stretching, consistent with the frequency assigned for $(CH_3)_3Pt(H_2O)_3+17$ For $[(CH_3)_3P_tOH]_4$ (point group T_d), group theory predicts four Raman-active Pt-0 stretching frequencies, two of these also appearing in the infrared spectrum. The Raman spectrum shows four lines between 340 and 430 cm^{-1} which may be assigned to Pt-0 stretching. Two of these are coincident with the infrared bands at 369 and 396 em-l. Complete Raman and infrared assignments for the cage modes of trimethylplatinum hydroxide will be published elsewhere.¹⁰

As to the previous deuteration results,³ Hoechstetter stated that his infrared spectra indicated a mixture of OD and OH compounds, and we can only assume that the band he reported at 712 cm^{-1} was a residue of the 719 cm⁻¹ line of the hydroxide and that the 560 cm⁻¹ OD line for some reason was not observed.

The OH wagging frequencies assigned here fall near the lower end of the range $600-1200$ cm^{-1,11} usually associated with this mode. Two factors have been discussed²¹ as being of primary importance in determining the location of the δ_{OH} mode: the per cent ionic character of the M-O bond (the more ionic the bond, the lower the frequency) and the 0---0 distance of any hydrogen bonds 0-H---0 associated with the hydroxyl proton (shorter *O-.--O* distances leading to higher frequencies). Tarte²¹ studied a series of $Cu(II)$ -hydroxy complexes, in which the first factor might be assumed to be reasonably constant, and found a nearly linear decrease of δ_{OH} as ν_{OH} , the OH stretching frequency, increased. This was to be expected, since v_{OH} is almost exclusively dependent on the second factor above, shorter O---O distances leading to lower ν_{OH} values. The data point for trimethylplatinum hydroxide *(i.e.,*

⁽²⁰⁾ E. Hartert and O. Glemser, *Z. Elektrochem.*, **60,** 746 (1956).

⁽²¹⁾ P. Tarte, *Spectrochim.* Acta, **13,** 107 (1958).

 v_{OH} 3595 cm⁻¹, δ_{OH} 724 cm⁻¹) falls very near the best straight line for the Cu(I1) system, indicating that the δ_{OH} value assigned here is reasonable. The low δ_{OH} frequency observed in the present case can then be understood as resulting from the absence of hydrogen bonding, which is also reflected in the sharpness of ν_{OH} (half-width \sim 5 cm⁻¹). In the crystal structure of trimethylplatinum hydroxide, the closest intermolecular contact is $H(hydroxyl) - H(methyl) = 2.2 \text{ Å}$.

Hartert and Glemser²⁰ have put the relationship between ν_{OH} and δ_{OH} into more general terms, allowing for variations in the per cent ionic character of the AI-0

bond by introducing an "effective radius" for the OH group, R_{OH} , as a parameter. The resulting empirical equation relates δ_{OH} , ν_{OH} , and *R*_{OH}, and seems to be useful for a wide range of cases. From the experimental frequencies for trimethylplatinum hydroxide, R_{OH} is calculated to be **1.32** A, which requires a cation ionic radius of **0.90** A. This seems to be in the right range, since the ionic radii of Pt^{2+} and Pt^{4+} are thought to be \sim 0.95 and \sim 0.70 Å, respectively.²²

(22) C. S. G. Phillips and R. J. P. Williams, "Inorganic Chemistry," Vol. **11.** Oxford University Press, New York, N. Y., 1966.

Correspondence

On the Question of the Generality of Symmetry Rules for Optically Active, Square-Planar Transition Metal Complexes^{1,2}

sir:

Optical activity in transition metal complexes has long intrigued theoreticians and experimentalists alike; yet, there is no satisfactory quantitative treatment of their rotatory strengths.³ Because of the intimate relationship between molecular geometry, chromophoric symmetry, and Cotton effect signs, empirical symmetry rules have much practical value in addition to providing theoretical stimulus. 4 It is of much interest, then, to note that an octant rule (D_{2h}) rule^{4b}) for copper(II)-amino acid complexes has been proposed.^{5,6} A more recent proposal⁷ claims that a D_{4h} rule^{4b}

correlates not only the copper(I1) complexes of amino acids, tripeptides, and tripeptide amides, but also the corresponding nickel complexes. A valid D4h rule would be of much theoretical and practical interest; clearly it is necessary to establish the accuracy and generality of such a rule. We wish to present evidence here which bears on this question.

Bis (L-prolinato)copper (1) and bis(hydroxy-L-pro-1inato)copper **(2)** have previously occupied a unique position in copper(I1) complexes since they were claimed^{7,8} to exhibit like, positive d-d Cotton effects. We have found 1 and **2** do have positive circular dichroism (CD) maxima in the $630-650-m\mu$ region (Figure 1A) in agreement with the earlier observations.^{7,8} However, previous work⁹ on overlapping, oppositely signed Gaussian curves (OOG curves) has pointed up the difficulty of quantitative analysis of such curves. Clearly, from Figure 1A, bis (i -prolinato)copper(I1) in water exhibits a CD spectrum composed of OOG curves. The dangers of assuming from Figure **1A** that **1** and **2** exhibit like-Cotton effects is illustrated in Figure **1B.** This latter figure shows the CD spectra of 1 and **2** in 95% ethanol. Again 1 exhibits OOG curves in ethanol as in water, whereas **2** clearly shows

^{(1) (}a) Structure and Optical Activity in Metal Complexes. **V.** Part **IV:** K. **M.** Wellman, T. G. Mecca, W. Mungall, and C. R. Hare, *J. Am. Chem. Soc.,* **SO,** 805 (1968). (b) **A** preliminary report of this **work** was presented at the 156th National Meeting of the American Cheimcal Society, Atlantic City, N. J., Sept 1968; see Abstract INOR 75.

⁽²⁾ All CD measuiements ieported here were recorded on a Cary 60 spectropolarimeter at ambient temperatures fitted with the Cary CD attachment. The amino acid amides and peptides were used as obtained from Cyclo Chemical Corp.

⁽³⁾ For pertinent comments, see F. Woldbye, *Reed Chem. Progr.* (Kresge-Hooker Sci. Lib.), 24, 197 (1963), and A. M. Sargeson, "Transition Metal Complexes," Vol. 3, R. L. Carlin, Ed., Marcel Dekker, Inc., New York, N. Y., 1966, pp 334-342.

^{(4) (}a) **J.** A. Schellman, *Accounts Chem. Res.,* **1,** 144 (1968): (b) J. **A.** Schellman, *J. Chem. Phus.,* 44, *55* (1866).

⁽⁵⁾ K. M. Wellman, **W.** Mungall, T. G. Mecca, and C. R. Hare, Abstracts, 154th National Meeting of the American Chemical Society. Chicago, Ill., Sept 1967, No. **0-38;** *Chem. Eno. News,* 45,48 (Oct **2,** 1867).

⁽⁶⁾ An "octant sign" rule has been proposed by C. J. Hawkins and E. Larsen' *Acta Chem. Scand.,* **19, 185** (1965), but the authois' prediction that squareplanar, bis complexes of simple D-amino acids and D-propylenediamine would yield negative d-d Cotton effects is opposite to observation (see ref **1,** 7, and 8). The utility of this rule is further complicated by the attempt to use it to define the chirality of a complex in addition to predicting Cotton-effect signs. (7) **R.** R. Martin, J. M. Tsangaiis, and J. W. Chang, *J. Am, Chem. Soc.,*

SO, 821 (1968). (8) T. Yasui, *Bull. Chem. Soc. Japan,* **38,** 1736 (1965); T. Yasui, J. Hidaka, and *Y.* Shimura, *J. Am. Chem. Soc.,* **87,** 2762 (1965).